Vascular endothelial cells generate peroxynitrite in response to carbon monoxide exposure.
نویسندگان
چکیده
Carbon monoxide causes a perivascular oxidative injury in animals, and we tested the hypothesis that endothelial cells could be a source of the injurious oxidants. Studies were undertaken to assess whether exposure to carbon monoxide would cause cultured bovine pulmonary artery endothelial cells to liberate reactive species. Concentrations of carbon monoxide between 11 and 110 nM caused progressively higher concentrations of nitric oxide to be released by endothelial cells based on measurements of nitrite and nitrate. Intracellular production of peroxynitrite was indicated by elevated concentrations of nitrotyrosine, and extracellular liberation of peroxynitrite was indicated by oxidation of p-hydroxyphenylacetic acid and dihydrorhodamine-123. Carbon monoxide did not disturb mitochondrial function based on the rate of oxygen consumption, intracellular production of hydrogen peroxide, and the ability of cells to reduce 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. Carbon monoxide also did not alter arginine transport by cells or nitric oxide synthase activity, but it was found to increase steady state levels of nitric oxide by competing for intracellular binding sites. Acute cytotoxicity from carbon monoxide, assessed as radioactive chromium leakage, was due to nitric oxide-derived oxidants. A delayed cell death, whose mechanism is not entirely clear, was also demonstrated by chromium leakage and uptake of vital stain. These findings offer a possible mechanism for adverse health effects caused by carbon monoxide at concentrations ranging from the relatively low levels in polluted environments to levels typically encountered with life-threatening poisoning. Carbon monoxide causes oxidative stress by a novel mechanism involving a competition for intracellular binding sites which increases steady state levels of nitric oxide and allows for generation of peroxynitrite by endothelium.
منابع مشابه
Carbon monoxide inhibits Fas activating antibody-induced apoptosis in endothelial cells
BACKGROUND The extrinsic apoptotic pathway initiates when a death ligand, such as the Fas ligand, interacts with its cell surface receptor (ie., Fas/CD95), forming a death-inducing signaling complex (DISC). The Fas-dependent apoptotic pathway has been implicated in several models of lung or vascular injury. Carbon monoxide, an enzymatic product of heme oxygenase-1, exerts antiapoptotic effects ...
متن کاملProtective Effects of α-Tocopherol on ABR Threshold Shift in Rabbits Exposed to Noise and Carbon Monoxide
Noise induced hearing loss (NIHL) is one of the most important occupational disease worldwide. NIHL has been found potentiate by simultaneous carbon monoxide (CO) exposure. Free radicals have been implicated in cochlear damage resulted from the exposure to noise and due to the CO hypoxia. This study examined whether α-tocopherol administration, as a free radical scavenger, causes the attenuatio...
متن کاملAdaptive responses and apoptosis in endothelial cells exposed to carbon monoxide.
Prior studies have shown that exposure to carbon monoxide (CO) will elevate the steady-state concentration of nitric oxide ((.)NO) in several cell types and body organs and that some toxic effects of CO are directed toward endothelial cells. Studies reported in this paper were conducted with bovine pulmonary artery endothelial cells exposed to 10 to 100 ppm CO to achieve concentrations between ...
متن کاملCarbon monoxide reverses established pulmonary hypertension
Pulmonary arterial hypertension (PAH) is an incurable disease characterized by a progressive increase in pulmonary vascular resistance leading to right heart failure. Carbon monoxide (CO) has emerged as a potently protective, homeostatic molecule that prevents the development of vascular disorders when administered prophylactically. The data presented in this paper demonstrate that CO can also ...
متن کاملCyclosporine A-induced nitration of tyrosine 34 MnSOD in endothelial cells: role of mitochondrial superoxide.
AIMS Cyclosporine A (CsA) has represented a fundamental therapeutic weapon in immunosuppression for the past three decades. However, its clinical use is not devoid of side effects, among which hypertension and vascular injury represent a major drawback. Endothelial cells are able to generate reactive oxygen and nitrogen species upon exposure to CsA, including formation of peroxynitrite. This ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical research in toxicology
دوره 10 9 شماره
صفحات -
تاریخ انتشار 1997